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ABSTRACT: New classes of locally divided rings R are introduced in two ways:
by requiring all CPI-extensions of R to be special types of rings of fractions and
by requiring all localizations of R to be pseudo-valuation rings. For rings R whose
sero-divisors are nilpotent and whose minimal prime ideal is divided. the first
method characterizes the locally divided R in which each nonminimal prime ideal
is contained in a unique maximal ideal. The second method, concerning LPVRs,
focuses on idealization, for which a typical result is the following. If E is a module
over an integral domain R, then R(+)E is an LPVR if and only if Risan LPVD
and Ejy is a divisible Ry/-module for each maximal ideal M of A.

1 INTRODUCTION

All rings considered below are commutative with identity. typically nonzero. If A is
a ring, then Z{A) denotes the set of zero-divisors of A, Nil{ A} the set of nilpotent
elements of A, Spec(A) the set of prime ideals of A, Maz(A) the set of maximal
ideals of A, tq(A) the total quotient ring of A, and dim(A) the {Krully dimension
of A. Our main purpose here is to further the studies in [3] by identifying some
new classes of locally divided rings. This is done in Section 2 by focusing on
rings of fractions, with characterizations of some classes of locally divided rings in
Theorem 2.2 (b) and Theorem 2.4 (b); and in Section 3 by introducing the class
of locally pseudo-valuation rings (LPV Rs), with characterizations of the LPV Rs
among certain classes of idealizations in Proposition 3.4 (fy. {g).

We next recall some background on divided and locally divided rings. These
concepts were introduced for integral domains in [7], and their final extension for
rings was achieved in [3]. (For additional background. see the summary in |G,
Section 7).) Let A be a ring. We say that P € Spec(4) is a divided prime (ideal of
AJif P is comparable under inclusion with each ( equivalently, each principal) ideal
of A; that A is a divided ring if each P € Spec(A) is divided in A: and that A &5 a
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locally divided ring if Ap is a divided ring for each I € Spec(A). Of course, each
divided ring is quasilocal. Moreover, each locally divided ring is a treed ring {in
the sense that none of its maximal ideals can contain incomparable prime ideals)
and also a going-down ring (in the sense of [11]) {3, Proposition 3.1 In contrast to
the situation for integral domains, neither one-dimensional rings nor Priifer rings
need be locally divided (3, Example 2.18]. However, domain-like behavior often
occurs in rings A such that Z(A) = Nil(A): of [11, Corollary 2.6, [3. Proposition
2.19 (b}], [3, Theorem 2.10]. Rings A such that Z(A) = Nil(A) are the (nonzero)
rings in which 0 is a primary ideal. We often use the facts that if 4 is a ring
such that Z(A) = Nil(A), then 4 has a unique minimal prime Py t¢(A) can be
identified as Ap,; and, more generally, for each P € Spec( A}, the localization Ap
can be viewed, up to canonical A- algebra isomorphism, as an overring of A (of.
[3, Proposition 2.5]).

Section 2 focuses exclusively on rings R such that Z (R) = Nil(R). For such
rings, it was shown in [3, Theorem 2.10] that R is a locally divided ring if and
only if each C' PI-extension of R (in the sense of [4]) is a ring of fractions Rg of R:
this generalized a result on integral domains 19, Theorem 2.4]. Theorems 2.2 (b)
and 2.4(b) identify the classes of locally divided rings R for which such S can be
chosen as either the complement of a prime ideal or the set of integral powers of
an element of R. Along the way, contact is made in Theorem 2.5 with topological
ideas involving the so-called g-rings,

An important class of divided integral domains is provided:by the pseudo-
valuation domains (PV Ds) introduced by Hedstrom-Houston. The pseudo-valuation
concept was extended from integral domains to the context of rings with zero-
divisors in [1], through the introduction of pseudo-valuation rings (PV Rs), a class
of divided rings whose definition is recalled in Section 3. That section’s main pur-
pose is to globalize the “PVR" concept, thereby obtaining a new class of locally
divided rings. As motivation, note that an important globalization of the PV D
concept was provided by the locally pseudo-valuation domains (LPV Ds) intro-
duced in [12], [13]. Accordingly, it seems natural to make the following definition:
a ring R is said to be a locally pseudo-valuation ring (LPVR) if Rp is a PVR
for each P € Spec(R). Evidently, each LPVR is locally divided, but the converse

is false, even in the case of quasilocal integral domains [8, Remark 4.10 (b A
direction for study is suggested by the role of idealizations in developing character-
izations of locally divided rings and identifying new classes of locally divided rings
[3, Proposition 2.16]. For this reason, we develop the above-mentioned characteri-
zations of L PV R idealizations in Proposition 3.4 (f), (g). For additional examples
of non-domain LPV Rs, we draw attention to Corollary 3.3, Example 3.5 {b) and
Proposition 3.6.

Any unexplained material is as in [14] [16], [17].

2 WHEN CPI-OVERRINGS ARE SPECIAL RINGS OF FRAC-
TIONS

We begin by generalizing a result that was originally proved for integral domains
[8, Proposition 2.1]. Theorem 2.1 may be viewed as a companion for |3, Theorem
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THEOREM 2.1. Let R be a ring such that Z{R) = Nil(R). Then R+ PRp is
integral over R for each P € Spec(R) if and only if R is o quasilocal going-down
7ing.

Proof. Suppose first that each CPl-overring K+ PRp is integral over R. We
claim that R is quasilocal. If not, choose distinct M, N € Max{R). Pick u ¢
M\ N and v € N\ M. By hypothesis, w := uv™! € MRy, is integral over R.
Fix an integrality equation, w™ + rp_w™ '+ - +ryw4rg =0, withr, € R
for each 4. Multiplying by v* and viewing matters via the canonical inclusions
R € R € tq(R), we have that v ¢ Rv € N, whence u € N, the desired
contradiction, thus proving the above claim. According to {11, Proposition 2.1 (a)],
it remains only to prove that if Py denotes the unique minimal prime ideal of R.
then D := R/P; is a going-down domain. Since D inherits the quasilocal property
from R, (8, Proposition 2.1] reduces our task to showing that if P € Spec(R), then
Q) := P/ Py is such that D+ Q Dy, is integral over D. Since each element of PRp is
assumed integral over R, the assertion then follows via the canonical identification
QDo = Q(Rp/PyRp) = PRp/PyRp.(cf. [5, Proposition 11 (i), p. 70}).

For the converse, we suppose that R is a quasilocal going-down ring and pro-
ceed to show that if P € Spec(R), then each element w € PRp is integral over R.
Let Fy, D,Q be as above. View W := w + PyRp € PRp/PyRp = QDg. Since D
is a quasilocal going-down domain, [8, Proposition 2.1} produces n > 1 such that
W€ Q= P/Py, C D= (R+ PyRp)/PyRp. Thus, there exists p € P such that
w" —pé& PyRp = Nil(Rp). Therefore, (w™ — p)™ = 0 for some m > 1, whence w
is integral over R. O

A proper overring cannot be both integral and flat [15, Proposition 12]. Ac-
cordingly, one might guess that flatness of C PI—overrings would characterize rings
that are rather different from those discussed in Theorem 2.1, In fact, {3, Theo-
rem 2.10] establishes that a special family of going-down rings, namely, the locally
divided rings, is characterized, among rings R such that Z{R) = Nil(R), by the
requirement of having flat CP[—overrings; and, moreover, that in this case, the
flat structures in question arise as rings of fractions. In Theorems 2.2 and 2.4, we
sharpen the focus by requiring particular types of rings of fractions,

THEOREM 2.2. Let R be a ring such thet Z(R) = Nil(R). Then:

{a} If R is a locally divided ring and P € Spec(R). then R + PRp = Rs.
where the multiplicatively closed set S is defined by S = R\U{M | PC M. M ¢
Maz(R)}. () Let Py denote the unigue wminimal prime ideal of R. Suppose
hat R+ PyRp, is R-flat (this holds if, for instance, Py is a divided prime ideal of
R). Then the following conditions are equivalent:

(1) For each P € Spec(R)\ {Fa}, there exists Q € Spec(R) such that
7+ PRp = gQ;

(2) For each P € Spec(R}\ { Py}, there exists a unique M € AMaz(R) such
that R + PRp = Ryy;

{3} R is a locally divided ring, and for each P € Spec(R)\{Py}. there exists
a unique M € Max{R) such that P C A,
Proof. (a) The argument given in [9, Proposition 2.3] carties over from the context
of integral domains, mufatis mutandis.

(I3} We first dispatch the parenthetical assertion: PoRp, = P if (andouly iy 1
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is a divided prime ideal of R [3, Proposition 2.5 (¢)]. in which case R+ Py Bp, = R
is certainly R-flat. Next, bxene that if P and % are prime ideals of 7 such
that Rp, = Rp,, then P, = PRp, N R = PyRp, 7 R = P,. Consequently,
(3) => (2) by {a). Moreover, it is trivial that (2) = (1). Finally, assume {1}. By
[3, Theorem 2.10], R is a locally divided ring. Fix I’ € Spee(R), P # Py By
(a) and (1), there exists @ € Spec{R) such that Ro = R+ PRp = Rg. where
S=R\U{M [P C M Me Maz(R)}. As Rg C Rp, we have PRpnRg C Ry
and so intersecting with R yields that P C Q. Next. consider any N € Maz(R;
such that @ € N. By [3, Proposition 2.5 (b,j Ry C Rg = Rg. However, it follows
from the definition @f S that Rs € Ry, and so Ry = Rg. Then, by the above
observation, we see that N = @; in particular. Q € Maz(R). It remains only to
show that if M € Maz{R) and P C M, then A = Q. Since Ro=Rs C Rp. we
see, by reasoning as above, that M C Q. Thus, we are done by the maximality of
M. O

We pause to make two comments about the formulation of Theorem 2.2. First,
it follows from (a) and [3, Proposition 2.5 (c)] that if the equivalent conditions
in (b) are satisfied (and R is as assumed), then Py is a divided prime ideal of R.
Second, the stipulation “P # Py” appears in (b} in order to avoid reducing to the
quasilocal case. Indeed, if the condition in (2) were asserted for P = Py, it would
follow (for instance, via pullback-theoretic reasoning as in 4, Ih{earem 2.5]} that
M is the only maximal ideal of R.

COROLLARY 2.3. Let R be a ring such that Z(R) = Nil(R). Then R+ PRp =
Rp for each P € Spec(R) if and only if dim(R) = 0.

Proof. If dim(R) = 0, then Spec(R) consists of just Fy, the unique minimal
prime ideal of R, in which case Rp, = R = R+ Py = R+ PyRp,. Conversely.
suppose that K + PRp = Rp for each P € Spec(R). Fix Q € Spec(R). It suffices
to show that Q@ € Max(R). We do so by revisiting some of the ideas in the proof
of Theorem 2.2 (b). Choose N € Max(R) such that Q € N. It is enough to
show that Rg = Ry (for then Q = N is a maximal ideal of R). This, in turn.
follows since Rg = Rpu(anqen, mespectmyy © Ry € R the equality holding
by Theorem 2.2 (a}, the first inclusion by the definition of localization, and the
second inclusion by [3, Proposition 2.5 (a)]. O

It may be of interest to record the following generalization of Corollary 2.3. Let
R be a ring such that Z(R) = Nil(R)and let P € Spec(R). Then R+ PRp = Rp
if and only if P € Max(R). For a proof, note that one can adapt the argument.
mutatis mutandis, that was given for integral domains in {10, Proposition 2.8 {a)l.
THEOREM 2.4. Let R be a quastlocal ring such that Z(R) = Nil(R). Then:

(a) Let P é: Spec(R). Then there exists ¢ non-zero-divisor r € R such that
R+ PRp = R, if and only if P is o divided prime ideal of R.

(b} For ?é{?? P ¢ Spec{R), there exists a non-zero-divisor r € B such that
R+ Pﬁp = R, if and only if R is a divided ring (if and only if R is a locally
divided ring).

Proof. (a) If P is a divided prime ideal of R, then PRp = P {3, Proposition 2.5
(c)], whence R+ PRp = R = R,. Conversely, suppose that ;? -PRp = R, for
some non-zero-divisor r € B. We show that P is divided in R equivalently. by {3,
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Proposition 2.5 (¢)], that PRp C R. 1t suffices to establish that r is a unit of K.
Deny. Since r is a non-zero-divisor, we have r—! € R + PRp; that is, there exist
de Rpe Pand z€ R\ P such that r™! =d +pz=!in tg(R). It follows that
z(1 —dr) = rp. As R is quasilocal and 7 is a nonunit of R, we have that 1 —dr is
a unit of R, and so0 z = (1L —dr) " 'rpe RpC P, the desired contradiction.

(b) The first equivalence follows from (a), since a ring R is divided if and only
if each prime ideal of R is divided in R. The parenthetical equivalence folows since
a quasilocal ring is divided if and only if it is locally divided (cf. [11, Remark (c},
p. 47]). O

Considerations involving rings of fractions of the kind figuring in Theorem 2.4
may remind one of g-rings. Recall that a ring R is called a g-ring if, for each
P € Spec(R), there exists r € R\ P such that Rp = R,.. Any open domain, in
the sense of [19], is a g-ring. The next result pursues the g-ring connection. First,
we recall some terminology and notation. Distinct prime ideals P ¢ @ of a ring
R are said to be adjacent (in R) in case no prime ideal of R is properly contained
between P and Q. Also, if R is a ring and r € R, then as in [5], X, denotes the
basic Zariski-open set {Q € Spec(R) | r € R\ Q}.

THEOREM 2.5. Let R be a quasilocal treed ring such that Z(R) = Nil(R). Then
the following conditions are equivalent:

(1) R is a g-ring, that is, for each P € Spec(R), there exists (a non-zero-
divisor) r € R\ P such that Rp = R,; ,

(2) For each P € Spec(R), the set {Q € Spec(R) | Q C P} is Zariski-open
in Spec(R);

(3) For each P € Spec(R), there ensts 7 € R\ P such that {Q € Spec(R) |
Q C P} = {Q € Spec(R) | r € R\ Q};

(4) For each P € Spec(R), one has P C N{Q € Spec(R) | P C Q};

(5) For each P € Spec(R) \ Max(R), there exists Q) € Spec(R) such that
P ¢ @ are adjacent in Spec(R).
Proof. We first comment on the parenthetical phrase in (1). If P € Spec(R). r &
R satisfy Rp = R, then r is a unit of Rp, whence r € R\ P C R\ Nil(R) =
R\ Z(R); that is, r is a non-zero-divisor in R.

(1) = (2): If P, r are as in (1), then {Q € Spec(RY 1 @ € P} = X, a Zariski-
open subset of Spec(R).

(2) = (3): Fix P € Spec(R). By (2) and the definition of the Zariski topol-
ogy, there exists r € R\ P such that P € X, C{Q € Spec(R) 1 Q C P}. As
{Q € Spec(R) | Q € P} C X,, (3) follows.

(3) = (1): Apply [14, Corollary 5.2] to the multiplicatively closed set generated
by r. (For an alternate proof that (1) ¢ (3), see [20, Proposition 1, p. 87].)

(3) = (4): Let P € Spec(R). The “quasilocal treed” hypothesis ensures that
each prime ideal of R is comparable to P under inclusion. Thus, if P, r are as in
(3), then r € N{Q € Spec(R) | PC Q}\ P.

(4) = (3): For P € Spec(R), use (4) tofind r € N{Q ¢ Spec(R) | PC Q}\ P.
Then P, r are as in {3).

(4) & (5): Let P € Spec(R). If P € Max(R), the “empty intersection”
{Q € Spec(R) | P ¢ Q} is interpreted as R, in which case P vacuously satisfies
the conditions in both (4) and (5). Next, suppose that P is nonmaximal. Then




78 Badawi and Dobhs

W {Q € Spec(R) | P € Q) is a prime ideal of R (since it 15 the intersection
of a chain of prime ideals of R (17, Theorem 91). and it is « lear that no prime ideal
of R can be properly contained between P and W Avcordingly, since P € IV, it
suffices to observe that P < W if and only if 2 and W are adjacent in Specl R

I'he conditions in Theorem 2.5 are not automatically satisfied. For instance. it
is well known that there exist valuation domains R (which are certainly quasilocal
treed rings such that Z(R) = Nil(R) but) which do not satisfy condition (5) (cf
[18]). However, we close the section by recording the fact that those conditions
are satisfied in the finite-dimensional case
COROLLARY 2.6. Let R be a quasilocal treed ring such that Z(R) = Nil(R)
and dim(R) < oo. Then for each P ¢ Spec(R), there erists ( di
r € R\ P such that Rp = i

(G non=-zero-dimsor

has height n, let Q be the height n + 1 prime ideal of R, and observe that P ()
are adjacent in Spec(R).

Proof. It suffices to verify condition (5) in Theorem 2.5, If P & Spec(R)\Max(R

3 LOCALLY PSEUDO-VALUATION RINGS

It is convenient to develop the first few results in this section for the quasilocal
case, that is, in the context of PV Rs. Recall that a ring R is said to be a pseudo-
valuation ring (PV R) if, for each P Spec(R) and a, b € R, one has that Pg
and Rb are comparable with respect to inclusion. Note that an integral domain
is a PVR if and only if it is a pseudo-valuation domain (PV D). We often use
the facts that the class of PV Rs is stable under the formation of localizations (at
prime ideals) [1, Theorem 12, Corollary 4] and homomorphic images |1, Corollary
3. In particular, each PVR is an LPVR (and so the PV Rs may be characterized
as the quasilocal LPV Rs.) While the focus in Theorem 3.1 emulates the interest
in [3] on idealization. it also retains the “Z(A4) = Nil{A)” favor of Section 2. since
this equality holds for 4 = R(+)E whenever R is an integral domain.
THEOREM 3.1. Let R be a ring and E an R-module, Put A = R(+)E. Then:

(a) If A is a PVR, then R is a PVR and F is a divisible R-module

(b) If R is a PVD and E is a divisible R-module, then Aisa PVR
Proof. (a) Since A is a PVR. so Is its homomorphic image A (O(+)E) = R It
remains to show that E is a divisible R-module. We show that if r is a regular
element of R and e € E, then there exists f € E such that rf = e. Without
loss of generality, r is a nonunit of R, and so r € P for some P € Spec(R). Put
Q= P(+)E ¢ Spec(R), and consider the elements o = (r,0) and b := (0.€) of

A. Easy calculations show that Qa = Pr(+)rE and Ab = 0(+ JRe. If Qa C Ab,
then Pr = 0, whence P =0 (since r is regular) and so 1 0 by the choice of P
contradicting the condition that r is regular. Hence. since A is a PV R, we have
that Ab C Qa. In particular, Re C rE, and so a suitable f can be found

(b) Let Q@ € Spec(A By [16, Theorem 25.1 (3)], C £ IH
P € Spec(R) suppose that elements v = (b, ¢) and v (e, f) of A thi
u & Gv. Our task is to show that O1 {

Consider first t
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Thus if p € P, there exists 7 € A such that pc = rb. It suffices to show that
if h € E, then there exists g € E such that {p, h)v = {r,g)u; that is, such that
pf +ch =re+bg As b +# 0 and E is a divisible module over the integral domain
R, a suitable g can be found.

In the remaining case, b = pc for some p € P. By hypothesis. there does not
exist h € FE such that u = (p, h)v; that is, such that pf 4+ ¢h = e. Since E is
R-divisible, ¢ = 0, whence b = 0. As u = (0,¢) ¢ Qu = 0(+)Pf, it follows from
divisibility of E that P = 0. Hence, Qv = 0 C Au, as desired. O

It is important to remark that the converse of Theorem 3.1 (a} is false. To see
this, use [2, Example 3.16 (c¢)] to construct a pseudo-valuation ring (R. M) such
that Nil{R) ¢ Z(R) = M. Take F := R in the definition of A in Theorem 3.1.
Pick 3 € Z(R)\ Nil{R); put b := (3,0}, @ := (0,1}, and P := Ni(R)(+)}R =
Nil(A) € A. Since a zero-divisor cannot be a unit, an easy calculation shows that
b does not divide a in A, If A were a PV R, then a characterization of PV Rs
[1, Theorem 5] would imply that a divides b? in A, a contradiction since 3% £ 0.
Hence, A is not a PVR. However, the choice of R ensures that £ = H is a
divisible R-module. In other words, Theorem 3.2 (a) would be false if its “PV D"
hypothesis were replaced by “PVR”.

We turn next to a class of idealizations R({+}FE in which the “PV R” property
can be characterized without having to specify that R is an integral domain.

THEOREM 3.2. Let R be a ring and E an overring of R (viewed as an R-module
in the usual way). Then the following conditions are equivalent:

(1) A:= R(+}F is a PVR;

(2) R is a PVR, E = tq(R), and if R is not an integral domain, then Ni{R)

is the only prime ideal of R, Nil(R)? = 0, and there erists w € Nil(R) such that
Nil(R)\ {0} = fuw e Rlue R\ Nil(R)}.
Proof. (1) = (2); Assume {1). Then by Theorem 3.1 (a), Risa PVR and
is a divisible A-module. Therefore, E = tg{H), since tg{ R} is the only R-divisible
overring of R. Now, suppose that R is not an integral domain. Then, since R is a
nuasilocal treed ring, Nid{R) € Spec{R) (cf. [17, Theorem 9}), and so Nil{R) # 0.
Fix a nonzero element w € Nil(R). If w has index of nilpotency n. there is no
harm in replacing w with w™™ !, and so we can suppose, without loss of generality.
that w? = @,

We claim that there does not exist a nonunit v € R\ Ni{H). Deny
w s 0, it i easy to check that {0.1) does not divide (w.0) in A, As (.

7 ;
nonunit of A and A is a PVR, it follows from [1. Theorem 5] that (w.0) divides
{0.,1){r,0) = (0,r) in A, whence r € Ew C N:iU(E), a contradiction. This proves
the above claim. As every element in B\ NVil{]?) is therefore a unit of R, it follows
that R has a unique prime ideal, namely, Ni{(R). Hence dim{R) = 0. and so
B=tg(R)=E.

Consider any nonzero element d € Nil{R). By reasoning as above, we see that
d e Ew = Rw, whence Nil{R) = Rw. Write d = ww, with v € B Tt remains only
to observe that v ¢ Ni{R) = Ruw, and this follows since d ¢ 0 = {Rw)w,

(2} = (1): Assume (2). By Theorem 3.1 {b). we may suppose that R is not an
integral domain. If w is as in (2), observe that w? = 0. (Otherwise. one sees via
induction that if n is any positive integer, then w” is the product of w with a nuit

Since

Vs a
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of R, contradicitng the fact that w is a nonzero nilpotent element.) Accordingly,
there are but three types of elements of R, namely, 0, a unit u of R, and a product
uw of & unit of R with w. As a result, there are but nine types of elements of
R(+)R = A. Since Rw = Nil(R), routine calculations reveal that as b ranges
over the elements of A, the ideal Ab takes on one of the following six forms: 0,
0(+)Nil(R), O(+)R, Nil(R)(+)Nil(R), Nil(R)(+)R, and R(+)R. On the other
hand, consider P := Nil(R){+)R, the unique prime ideal of A. As a ranges over
the elements of A, routine calculations reveal that Pa takes on one of the following
three forms: 0, 0(+)Nil(R), and Nil(R)(+)R. Since each of these three forms is
comparable under inclusion to each of the nine forms that Ab can attain, it follows
from the very definition of “PVR” that Aisa PVR. O

It may be of interest to record an explicit example of a non-domain R of the kind
described in condition (2) of Theorem 3.2. One such ring is R :=(Z/2Z)[X]/(X?),
the ring of dual numbers over the field with two elements; in this example, the
coset represented by X is a suitable w.

We next use Theorem 3.2 to construct a new family of PV Rs.

COROLLARY 3.3. Let p be a positive prime number and let n be a positive integer.
Then Z/p"Z(+)L/p"Z is a PV R 1f and only if n is either 1 or 2.

Proof. It is straightforward to check that that R :=Z/p"Z is a PVR with a
unique prime ideal; and, being a finite ring, R coincides with its total quotient
ring. Let A denote the idealization in question. Hence, by Theorem 3.2, A is a
PVRifn = 1. Next, since Nil(R) = pZ/p"Z, note that Nil(R)? = 0if and only if
n < 2. Finally, observe that if n = 2, then the coset represented by p is a suitable
w, so that an application of Theorem 3.2 completes the proof. O

The next result collects some facts about LPV Rs that are analogous to the
behavior of the “locally divided” concept, while also providing the promised ex-
amples of LPV Rs that arise as idealizations.

PROPOSITION 3.4. (a) Each LPVR is a locally divided Ting.

(b) If P C Q are prime ideals of a ring R and Rq is a PVR, then Rp is a
PVR. .
(c) A ring R is an LPFVR if and only if Ry is a PVR for each M € Maz(R).

(d) The class of LPV Rs is stable under the formation of rings of fractions and
homomorphic images.

(¢) Let Ry, ..., Rn be finitely many rings, and put A=Ryx - x Ry. Then
A is an LPVR if and only if R; 15 an LPVR foreachi=1,....1

(f) Let R be an integral domain and E an R-module. Then R(+)E is an
LPVR if and only if R is an LPVD and Ey is o divisible Rar-module for each
M € Maz(R).

(g) Let R be a ring such that Z(R) = Nil(R) and E an overring of R. Then
the following conditions are equivalent:

(1) A:= R(+)E is an LPVE;

(2) Risan LPVR, E = tq(R), end if R is not an integral domain, then R
is o PVR such that Nil(R) is the only prime ideal of R, Nil(R)? =0, and there
exists w € Nil(R) such that Nil(R)\ {0} = {uwe Rlu€ R\ Nil(R)}.

Proof. (a) The assertion is immediate from the definitions, since each PVR is a
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divided ring.

(b) It suffices to observe that Rp = (RQ)pr,, [5, Proposition 7 (i), p. 65 is a
localization of a PV R.

(¢) The “only if” assertion is trivial, and the “if” assertion follows from (b}

(d), (e): Using the above remarks, one easily adapts the proof of the corre-
sponding facts about the class of locally divided rings (3, Proposition 2.1 (a), (b)].

(f) Let A: +R(+)E. A proofis easily fashioned by combining the following four
facts: Max(A) = {M(+)E | M € Maz(R)} [16, Theorem 25.1}; if M < Maz(R)
and N 1= M(+)E, then Ay = Ry(+)Eu (16, Corollary 25.5 (2)]; part (c) of the
present result; and Theorem 3.1.

(g) Let Py denote the unique minimal prime ideal of R. As recalled in the
Introduction, T := Rp, = tq(R). If M € Maz(R), then [3, Proposition 2.5 {)]
and [5, Proposition 7 (i), p. 65] provide canonical inclusions B € Rar € Ly =
Emm © Trum = (Rr)mm = Bp, = T. Thus, T = tq(Rar) and Ejy is an
overring of Ry (and of R) for each M € M ax{R).

(1) = (2): Assume (1). If M € Maz(R) and N := M(+)E, then Ay =
Raf(+)Ex is a PVR. Therefore, by Theorem 3.2, Ry is a PVR and Ej; =
tq(Ry) = T = Tar. It follows that R is an LPVR by (c); and that £ = T by
globalization. Suppose now that R is not an integral domain. In view of Theorem
3.2, it suffices to show that R is quasilocal. For each M € M az(R), observe that
R,y is not a domain (since it has Ras a subring), and so Theorem 3.2 ensures that
dim(Ry;) = 0. Hence, dim(R) = 0. As R has a unique minimal prime ideal. it
follows that R has a unique prime ideal and, a fortiors, R is quasilocal, as desired.

(2) = (1): Assume (2). Since any PV R is an LPV R, Theorem 3.2 reduces us
to the case in which R is an integral domain. For this case, argue as in the proof
of (f) (letting either Theorem 3.1 or Theorem 3.2 play the role of Theorem 3.1 in

the earlier proof). O

Recall that any zero-dimensional ring is locally divided (3, Corollary 2.2]. Ex-
ample 3.5 (a) shows that the conclusion cannot be strengthened to “LPVR".
Moreover, Example 3.5 (b) provides an example of a nonquasilocal zero-dimensional
LPVR.

EXAMPLE 3.5. (a) There exists a ring R such that dim{R) = 0 (so that R is
a locally divided ring) and R is not an LPVRH.

(b) There exists a ring R such that dim{R) =0, Ris an LPVR, and R is not
a PVR.

Proof. (a) Let R be any idealization of the kind considered in Corollary 3.3, with
n > 3. By Corollary 3.3, H is not a PV R. However, by [16, Theorem 25.1 (3.
R is quasilocal, and so R is not an LPVR. Of course, like any finite ring, R is

zero-dimensional.
(b) Let R be the direct product of finitely many, but at least two, rings of the

form Z/nZ, n > 2. Observe that R, being finite, is necessarily zero-dimensional:
and, by Proposition 3.4 (e}, that R is an LPV R. However, since n > 2, we see

that R is not quasilocal and, a fortiord, not a PVE O

Proposition 3.6 is an LPV R-theoretic analogue of the result [3, Corollary 2.24
{e)] that if a ring R is such that the large quotient ring Hyp) is o divided ring for

|
gf
i
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each P € Spec(R), then R is a locally divided ring.

PROPOSITION 3.6. Let R be q ring such that Rypy is a PVR for cach P ¢
Spec(R),. Then R is an LPVR.

Proof. We show that Rg is a PVR for each () < Spee{R}. Suppose first that
€ is a regular prime ideal of R. By hypothesis, Ripy is a divided ring for each
P € Spec(R). Then, by [3, Theorem 2.23 (c}]. Z(R) € Q. and so by [3, Proposition
2.5 (a)], Rg = Ryg), which was assumed to be a PVR.

In the remaining case, Q C Z(R). Observe that T := tg(R) is a ring of quo-
tients of any R(p) and so, by Proposition 3.4 {(d}, T'is an LPVR. Hence. so is
Tor = Rg [5, Proposition 7 (i}, p. 65]; that is, Ry is a quasilocal LPVR, namely,

a PVR, to complete the proof, 0

We close with an example showing that the converse of Proposition 3.6 is false.
Consider the ring R := Z/47 x Z/4Z. As Z/4Z is a PVR, hence an LPVR, it
follows from Proposition 3.4 {e) that R is an LPVR. However, R plisnota PVR
for any P € Spec(R). Indeed, the zero-dimensionality of R forces t4¢(Ry = R,
whence Rip; = R, which is not quasilocal and, thus, not a PVR.
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